Tony Pantalleresco Show Notes – Show Of the Month October 1 2012

The U.S. Drug Enforcement Administration classifies ADHD drugs as Scheudle ll

Modulation of apoptosis in human hepatocellular carcinoma

Sesame and Rice Bran Oil Lowers Blood Pressure, Improves Cholesterol

Chlorophyll revisited- anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-α gene by the same

Bacterial Cause Found for Skin Condition Rosacea

********************************************************************

The U.S. Drug Enforcement Administration classifies ADHD drugs as Scheudle ll,

in the same class of highly addictive drugs as morphine, opium and cocaine.

Common brand name stimulants, also known as ADHD drugs,  include Ritalin, Concerta, Adderall, Metadate, Vyvanse, Provigil.

A) Drug Agency Regulatory Warnings on Stimulants/ADHD drugsThere have 31 drug regulatory agency warnings from eight countries including warnings of stimulant induced heart problems, suicide, violence, depression, mania, psychosis, hallucinations and death. See Tab A

B) Drug Studies on StimulantsThere have been 119 studies in twelve countries on stimulant induced side effects including birth defects, heart problems, depression, suicidal ideation, violence, hallucinations, mania, psychosis, homicidal ideation and death. See Tab B

C) Adverse Reaction Reports filed with the US FDA — There have been 14,158 adverse reactions reported to the US FDA in connection with stimulants. See Tab C

Tab A) Stimulant Drug Warnings:

There have been 31 warnings from eight countries (United States, United Kingdom, Canada, Japan, Australia, New Zealand, France and Singapore) warning that stimulants cause harmful side effects, which include:

12 warnings on stimulants causing heart problems 8 warnings on stimulants causing mania/psychosis 8 warnings on stimulants causing death 3 warnings on stimulants causing hallucinations 2 warnings on stimulants causing depression 2 warnings on stimulants causing violence, hostility or aggression 2 warnings on stimulants causing seizures 1 warning on stimulants causing suicide risk/attempts 1 warning on stimulants causing anxiety Back to Top

Tab B) Stimulant Drug Studies:

There are 20 studies from four countries (United States, Australia, Denmark and Italy) showing that stimulants cause harmful side effects, including:

5 studies on stimulants causing medication abuse 3 studies on stimulants causing heart problems 2 studies on stimulants causing death 1 study on stimulants causing suicide risk/attempts 1 study on stimulants causing birth defects 1 study on stimulants causing violence 1 study on stimulants causing homicidal ideation 1 study on stimulants causing depression 1 study on stimulants causing mania, psychosis and hallucinations Back to Top

Tab C – Stimulant Drug Side Effects Reported to the FDA:

The Adverse Drug Reactions that have been reported to the FDA’s Adverse Event Reporting System (MedWatch), between 2004 and 2011 include:

871 cases of stimulants causing reactions related to suicide (completed suicides, suicide attempts, suicidal ideation and suicidal behavior) 636 cases of stimulants causing aggression 593 cases of stimulants causing hallucinations 499 cases of stimulants causing anxiety 495 cases of stimulants causing abnormal behavior 464 cases of stimulants causing depression 220 cases of stimulants causing death/sudden death 147 cases of stimulants causing mania 52 cases of stimulants causing homicidal ideation 44 cases of stimulants causing diabetes 30 cases of stimulants causing hostility 25 cases of stimulants causing coma 23 cases of stimulants causing physical Assault 21 cases of stimulants causing birth defects 13 cases of stimulants causing violence-related symptoms 12 cases of stimulants causing psychosis 11 cases of stimulants causing homicide 9 cases of stimulants causing sexual dysfunction 1 case of stimulants causing stillbirth

Search CCHR’s Psychiatric Drug Side Effects database for more information

************************************************************************

Modulation of apoptosis in human hepatocellular carcinoma (HepG2 cells) by a standardized herbal decoction of Nigella sativa seeds, Hemidesmus indicus roots and Smilax glabra rhizomes with anti- hepatocarcinogenic effects.

BMC Complement Altern Med. 2012;12:25

Authors: Samarakoon SR, Thabrew I, Galhena PB, Tennekoon KH

Abstract BACKGROUND: A standardized poly-herbal decoction of Nigella sativa seeds, Hemidesmus indicus roots and Smilax glabra rhizome[U1] s used traditionally in Sri Lanka for cancer therapy has been demonstrated previously, to have anti-hepatocarcinogenic potential. Cytotoxicity, antioxidant activity, anti-inflammatory activity, and up regulation of p53 and p21 activities are considered to be some of the possible mechanisms through which the above decoction may mediate its anti-hepatocarcinogenic action. The main aim of the present study was to determine whether apoptosis is also a major mechanism by which the decoction mediates its anti-hepatocarcinogenic action. METHODS: Evaluation of apoptosis in HepG2 cells was carried out by (a) microscopic observations of cell morphology, (b) DNA fragmentation analysis, (c) activities of caspase 3 and 9, as well as by (d) analysis of the expression of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) proteins associated with cell death. RESULTS: The results demonstrated that in HepG2 cells, the decoction can induce (a) DNA fragmentation and (b) characteristic morphological changes associated with apoptosis (nuclear condensation, membrane blebbing, nuclear fragmentation and apoptotic bodies). The decoction could also, in a time and dose dependent manner, up regulate the expression of the pro-apoptotic gene Bax and down regulate expression of anti-apoptotic Bcl-2 gene (as evident from RT-PCR analysis, immunohistochemistry and western blotting). Further, the decoction significantly (p < .001) enhanced the activities of caspase-3 and caspase-9 in a time and dose dependent manner.—CONCLUSIONS: Overall findings provide confirmatory evidence to demonstrate that the decoction may mediate its reported anti-hepatocarcinogenic effect, at least in part, through modulation of apoptosis.—PMID: 22458551 [PubMed – indexed for MEDLINE]

Recipe for making this decoction of Black seed and Smilax ( sarsaparilla)—take equal parts of each herb and boil them down to at least half of the volume of water you put in— I.E 2 pint down to 1 pint or less ( 500mls for the metric to 250 mls)—and then use small amounts 1-2 oz increments 4-5 times daily

*************************************************************************

Sesame and Rice Bran Oil Lowers Blood Pressure, Improves Cholesterol

ScienceDaily (Sep. 18, 2012) — People who cooked with a blend of sesame and rice bran oils saw a significant drop in blood pressure and improved cholesterol levels, according to new research presented at the American Heart Association’s High Blood Pressure Research 2012 Scientific Sessions.—The researchers found cooking with a combination of these oils in a variety of ways worked nearly as well as a commonly prescribed high blood pressure medication, and that the use of the oil blend with medication yielded even more impressive results.—“Rice bran oil, like sesame oil, is low in saturated fat and appears to improve a patient’s cholesterol profile,” said Devarajan Sankar, M.D, Ph.D., a research scientist in the Department of Cardiovascular Disease at Fukuoka University Chikushi Hospital in Chikushino, Japan. “Additionally, it may reduce heart disease risk in other ways, including being a substitute for less healthy oils and fats in the diet[U2] .”–The 60-day study in New Delhi, India, divided 300 people with mild to moderately high blood pressure into three groups. One group was treated with a commonly used blood pressure lowering medication called a calcium-channel blocker (nifedipine). The second group was given the oil blend and told to use about an ounce each day in their meals.—The final group received the calcium channel blocker and the oil blend.—-All three groups, with approximately an equal number of men and women, average age of 57, saw drops in their systolic blood pressure. Systolic blood pressure is the top number in a blood pressure reading and measures the force of blood against your artery walls when the heart is pumping.—Systolic blood pressure dropped an average of 14 points for those using only the oil blend and 16 points for those taking medication. Those using both saw a 36-point drop.—Diastolic blood pressure also dropped significantly: 11 points for those eating the oil, 12 for those on medication and 24 for those using both. Diastolic blood pressure is the bottom number in a blood pressure reading that measures the force of blood against your artery walls when your heart is at rest between beats.—As for cholesterol, those using the oils saw a 26 percent drop in their LDL (“bad” cholesterol) and a 9.5 percent increase in the HDL (“good” cholesterol[U3] ), while no changes in cholesterol were observed for the patients who used only the calcium-channel blocker. Those who took the calcium channel blocker and the oils had a 27 percent drop in LDL levels and a 10.9 percent increase in the HDL[U4] . Healthier fatty acids and antioxidants, such as sesamin, sesamol, sesamolin and oryzanol, in the oil blends may be responsible for the results, Sankar said. These antioxidants, mono and poly unsaturated oils are compounds found in plants and have been linked with lower blood pressure and total cholesterol in earlier studies.–Additional studies are needed to determine if the oil blend is as beneficial as it seems. The combination was made specifically for this study, and there are no plans to market it commercially, Sankar said. Blending these oils yourself would not necessarily produce these effects.–Co-authors are.Ravinder Singh, M.B.B.S., and Biprabuddha Chatterjee, M.Sc.-Story Source-The above story is reprinted from materials provided by American Heart Association.

******************************************************************************

Chlorophyll revisited~~ anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-α gene by the same.

Inflammation. 2012 Jun;35(3):959-66

Authors: Subramoniam A, Asha VV, Nair SA, Sasidharan SP, Sureshkumar PK, Rajendran KN, Karunagaran D, Ramalingam K

Abstract–In view of the folklore use of green leaves to treat inflammation, the anti-inflammatory property of chlorophylls and their degradation products were studied. Chlorophyll a and pheophytin a (magnesium-free chlorophyll a) from fresh leaves showed potent anti-inflammatory activity against carrageenan-induced paw edema in mice and formalin-induced paw edema in rats.[U5] Chlorophyll a inhibited bacterial lipopolysaccharide-induced TNF-α (a pro-inflammatory cytokine) gene expression in HEK293 cells, but it did not influence the expression of inducible nitric acid synthase and cyclooxygenase-2 genes. Chlorophyll b only marginally inhibited both inflammation and TNF-α gene expression. But both chlorophyll a and chlorophyll b showed the same level of marginal inhibition on 12-O-tetradecanoyl-phorbol-13-acetate-induced NF-κB activation. Chlorophylls and pheophytins showed in vitro anti-oxidant activity. The study shows that chlorophyll a and its degradation products are valuable and abundantly available anti-inflammatory agents and promising for the development of phytomedicine or conventional medicine to treat inflammation and related diseases.—PMID: 22038065 [PubMed – indexed for MEDLINE]

**********************************************************************

Chlorophyll is a chemoprotein commonly known for its contribution to the green pigmentation in plants, and is related to protoheme, the red pigment of blood. It can be obtained from green leafy vegetables (broccoli, Brussel sprouts, cabbage, lettuce, and spinach), algae (Chlorella and Spirulina), wheat grass, and numerous herbs (alfalfa, damiana, nettle, and parsley).–Chlorophyll has been used traditionally to improve bad breath and other forms of body odor including odors of the urine, feces, and infected wounds. More recently chlorophyll has been used to aid in the removal of various toxins via the liver and remains a key compound for improving the function of essential detoxification pathways. Supportive evidence suggests it may be used as an anti-inflammatory agent for conditions, such as pancreatitis as well as exhibiting potent antioxidant and chemoprotective activities. Scientific research has demonstrated it may be an effective therapeutic agent in the treatment of herpes simplex, benign breast disease, chemoprevention, tuberculosis, and rheumatoid arthritis. Type 2 diabetes and obesity are also being explored as areas where chlorophyll can also be used.

***********************************************************************

Bacterial Cause Found for Skin Condition Rosacea

ScienceDaily (Aug. 28, 2012) — Scientists are closer to establishing a definitive bacterial cause for the skin condition rosacea. This will allow more targeted, effective treatments to be developed for sufferers, according to a review published in the Journal of Medical Microbiology.—Rosacea is a common dermatological condition that causes reddening and inflammation of the skin mostly around the cheeks, nose and chin. In severe cases skin lesions may form and lead to disfigurement[U6] . Rosacea affects around 3% of the population — usually fair-skinned females aged 30-50 and particularly those with weak immune systems. The condition is treated with a variety of antibiotics, even though there has never been a well-established bacterial cause.[U7] A new review carried out by the National University of Ireland concludes that rosacea may be triggered by bacteria that live within tiny mites that reside in the skin.–The mite species Demodex folliculorum is worm-like in shape and usually lives harmlessly inside the pilosebaceous unit which surrounds hair follicles of the face. They are normal inhabitants of the face and increase in number with age and skin damage — for example, following exposure to sunlight. The numbers of Demodex mites living in the skin of rosacea patients is higher than in normal individuals[U8] , which has previously suggested a possible role for the mites in initiating the condition.—More recently, the bacterium Bacillus oleronius was isolated from inside a Demodex mite[U9] and was found to produce molecules provoking an immune reaction in rosacea patients. Other studies have shown patients with varying types of rosacea react to the molecules produced by this bacteriumexposing it as a likely trigger for the condition. [U10] What’s more, this bacterium is sensitive to the antibiotics used to treat rosacea.—Dr Kevin Kavanagh who conducted the review explained, “The bacteria live in the digestive tracts of Demodex mites found on the face, in a mutually beneficial relationship. When the mites die, the bacteria are released and leak into surrounding skin tissues — triggering tissue degradation and inflammation.”[U11] “Once the numbers of mites increase, so does the number of bacteria, making rosacea more likely to occur. Targeting these bacteria may be a useful way of treating and preventing this condition,” said Dr Kavanagh. “Alternatively we could look at controlling the population of Demodex mites in the face.. Some pharmaceutical companies are already developing therapies to do this, which represents a novel way of preventing and reversing rosacea, which can be painful and embarrassing for many people.”—-Story Source-The above story is reprinted from materials provided by Society for General Microbiology, via AlphaGalileo. —Journal Reference-Stanisław Jarmuda, Niamh O’Reilly, Ryszard Żaba, Oliwia Jakubowicz, Andrzej Szkaradkiewicz and Kevin Kavanagh. The potential role of Demodex folliculorum mites and bacteria in the induction of rosacea. Journal of Medical Microbiology, 2012 DOI: 10.1099/jmm.0.048090-0

Advertisements

About Health Axis

Searching for the truth in health and nutrition. Sharing information and ideas across the globe.
This entry was posted in Health Politics, Nutrition, Remedies, Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s